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Chaotic dynamics in an elastic medium with surface disorder

S.-Z. Zhang,* E. Louis, and E. Cuevas†

Departamento de Fı´sica Aplicada, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain

J. A. Vergés
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı´ficas, Cantoblanco, E-28049 Madrid, Spain

~Received 10 January 1997; revised manuscript received 15 July 1997!

We investigate the dynamics of an elastic medium described by a two-dimensional network of nodes of
equal mass connected by springs whose force constants are equal inside the network and chosen at random at
its surface. The system can be considered a billiard in the sense that the network is ordered all throughout its
bulk. Being an eigenvalue problem its complexity is manifested in a frequency statistics which, in most of the
spectrum, can be described by the Wigner-Dyson distribution. At low frequencies the dispersion relation is
linear in the wave number and the network shows regular behavior~frequency statistics according to Poisson
distribution!. We study the dynamical behavior of this model by investigating how the system escapes from a
normal mode of the ordered network, and calculate the Lyapunov exponentl in different frequency regions.
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I. INTRODUCTION

Quantum analogs of classical systems which show cha
behavior have spectra whose short-range statistical prope
are adequately described by random matrix theory@1–4#. If
the system is rotationally invariant and has time rever
symmetry, some of the features of its spectrum are clos
simulated by random matrices of the Gaussian orthogo
ensemble~GOE!. In particular, their nearest-level spacin
are distributed according to the Wigner-Dyson distributio
Many quantum systems which satisfy this picture@1,2# have
already been identified.

We have recently proposed a model of quantum cha
billiards in two and three dimensions@5,6# which consists of
a tight-binding Hamiltonian in which the energies of th
atomic orbitals at the surface sites are chosen at rand
This model, in contrast with the more standard geome
billiards @1#, has two length scales: the system sizeL and the
lattice constanta. In the macroscopic limit (L/a→`) micro-
scopic roughness remains and affects quantum particles,
particles characterized by a wavelength of the order ofa. As
a consequence, in the macroscopic limit all levels are dist
uted according to Wigner-Dyson statistics@7#.

In this work we investigate the dynamics of a tw
dimensional~2D! network of nodes of equal mass connect
among themselves by springs that have the same force
stant within the bulk of the network, and to rigid wal
through springs whose force constants are chosen at ran
Like the model Hamiltonian described above, this syst
can be considered a billiard as it is ordered throughout
bulk, whereas complex~chaotic! behavior is expected to b
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derived from the disorder introduced at its surface. Being
eigenvalue problem its complexity will result in a frequen
statistics of the Wigner-Dyson type in most of the spectr
~see below!. In the quantum limit, this model can be re
garded as the phonon counterpart of the electron Ha
tonian investigated in@5#. The model presented here is a
interesting system to investigate chaotic dynamics as its
havior significantly varies through the band of norm
modes. In fact, at low frequencies the velocity is dispersi
less, and a more regular behavior is expected in this
quency region. The study of the dynamics is carried out
investigating how the system escapes from a normal mod
the ordered network@8,9#. This allows us to calculate the
Lyapunov exponent.

II. MODEL AND METHODS

The model whose dynamics will be investigated in th
work is characterized by the same type of parameters as
electron Hamiltonian discussed in Ref.@5#. The energies of
the atomic levels at the boundary sites in the tight-bind
Hamiltonian@5# and the surface force constants in the elas
network are random variables which are used to desc
surface disorder~either topological or compositional!. In the
former case the disorder is diagonal whereas in the mo
presented here it is nondiagonal. We do not expect, howe
that this should imply any significant difference in their b
haviors. In fact, we have recently checked that, if the surf
hopping integrals in the tight-binding Hamiltonian, inste
of the energies of the surface atomic orbitals, are chose
random, the behavior of the system is essentially the sa
Both the electron Hamiltonian and the elastic network
billiards in the sense that their bulks are completely order
whereas complexity is expected to be derived from surf
disorder. Those parameters describe the amount in which
system deviates from integrability in a more natural way th
in more standard two- or three-dimensional geometrical
liards, such as Sinai, stadium, or Africa billiards@1,2,10#. In

s,
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the following we briefly discuss the Hamiltonian used in th
work and the procedures we have followed to investigate
statistics of the frequencies of the normal modes and
dynamics of the model.

In all our simulations the 2D elastic medium is repr
sented by a square network of nodes of equal massm con-
nected by Hookean springs. In particular, we take cluster
the square lattice containingL3L nodes, joined by first and
second nearest-neighbor springs@11#. The Hamiltonian is

H5m(
i 51

N

üi1 (
i , j 51

N

ki , j@~ui2uj !• r̂ i , j #
2, ~1!

where N5L2. ki , j5k1 ,k2 if i and j are first and second
nearest neighbors, respectively, and zero otherwise.ui is the
displacement of nodei and r̂ i , j is the unit vector in thei -j
direction. In these calculations we take the mass of the no
(m) and the force constants of the bulk springs equal to
(m5k15k251), whereas the force constants of the surfa
springs ~those which join the network to the rigid walls!
were chosen at random in the rangek1

s ,k2
sP@kmin ,kmax#. Cal-

culations have been carried out for network sizes up
L580 ~note that the system hasS52L2 normal modes!. The
Schwarz algorithm for symmetric matrices was used to co
pute the whole spectrum@12#. Averaging sets include up to
50 000 modes. The density of states~normal modes! is illus-
trated in Fig. 1. The low frequency region in which the de
sity of states is very small is characterized by a dispers
relation approximately proportional to the wave numb
@11#, which gives a dispersionless velocity.

To characterize the statistical properties of the spec
each real spectrum of frequenciesv i is mapped onto an un
folded spectrumV i throughV i5N̄(v i), whereN̄(v) is the
average number of modes up to a frequencyv. This aver-
aged magnitude is obtained after calculating the mean d
sity of states in small frequency intervals that contain a la
number of modes in spite of being small. This is alwa
possible in our model since the number of disorder real
tions can be taken as large as necessary. Thus the ave
density of states can be considered as a continuous fun

FIG. 1. Density of states~DOS! in a surface disordered sprin
network of sizeL540, as a function of frequency for the mod
investigated in this work~see text!. The force constants at the su
face were randomly chosen in the range 0.0–2.0. In the calcula
an imaginary part, equal to the average intermode spacing,
added to the frequency.
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of v. Finally, N̄(v) is obtained by integrating the average
density of states from the bottom of the frequency band
to v.

The dynamics of this system is studied by investigat
how the system escapes from a normal mode of the ord
network. Specifically, we launch~at t50) the disordered
network into a normal mode of the ordered (o) network and
calculate the correlation function of the displacement field
a function of time. We further assume that the velocity of t
nodes att50 is zero. The displacement vector att50 of a
nodei of the disordered system is then given by

ui~0!5uib
o 5 (

a51

S

A iacab , ~2!

whereA ia are the amplitudes~vector! of the normal modesa
of the disordered network andcab are constants which ar
obtained from

cab5(
i 51

N

A ia•A ib
o , ~3!

whereA ib
o are the amplitudes of the normal modeb of the

ordered network. Thecab form a distribution whose varianc
(s) depends on the ordered normal mode on which the
ordered network is launched. This variance will be an ess
tial parameter in the discussion of the dynamical behavio
the system.

The displacement field in the disordered network is giv
by

ui~ t !5 (
a51

S

A iacabcos~vat !, ~4!

va being the frequencies of the normal modes. To inve
gate how the network escapes from its initial vibrational st
we calculate the correlation function, namely,

C~ t !5(
i 51

N

ui~0!•ui~ t !5 (
a51

S

cab
2 cos~vat !. ~5!

The results presented in the next section indicate that
brational states showing a chaotic behavior are character
by a correlation function which at short times decreases

C~ t !5cos~vb
ot !exp~2lt !, ~6!

wherel is the Lyapunov exponent andvb
o is the frequency

of the normal mode of the ordered system into which
disordered network was launched att50.

III. RESULTS

A. Statistics of the frequency spectrum

We have first investigated the nearest-level~mode! statis-
tics of the normalized spectra. The results are illustrated
Fig. 2 for clusters of sizesL5 50 and 80. There is a rathe
wide frequency range where the variance is close to tha
GOE matrices~0.286!. The inset of Fig. 2 shows the distr
bution of nearest-mode spacings in a frequency region wh

ns
as
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the variance is'0.286. As expected, the results closely fo
low the Wigner-Dyson distribution.

As already found in the quantum case@5#, we observe the
existence of quasi-ideal states near the band edges: m
that are similar to those found in the ordered network and
therefore follow the Poisson distribution, see inset of Fig
It has to be remarked that the results for frequency regi
close to the band edges may not be so accurate due to
very low density of states in that region~see Fig. 1!. In the
present case there is a rather wide frequency range clos
the bottom of the band, where the variance is very differ
from the Wigner-Dyson value. We have checked that t
result is very robust and depends only slightly on the deg
of disorder, for the system sizesL reached in this work. The
reason for this behavior was already noted in the preced
section, and in fact it is a consequence of the nearly lin
dispersion relation in that frequency region: a linear disp
sion relation gives an almost constant velocity~independent
of the wave number!. Elastic waves having such a dispersi
relation propagate at a velocity which does not depend or
and thus average out any surface disorder.

A point of remarkable relevance is the dependence
these results on the size of the systemL. In the case of the
electron Hamiltonian, numerical results@5# and qualitative
arguments based upon perturbation theory@7# indicated that,
in the macroscopic limit, all energy levels should be distr
uted according to the Wigner-Dyson statistics, no matter
degree of disorder. Although in the present case the la
size of the matrices makes a reliable numerical study d
cult, a similar qualitative argument should also be valid

FIG. 2. Variance of the nearest-mode spacings in the wh
normalized frequency spectrum. The results correspond to 30
izations of 50350 clusters~circles! and five realizations of 80380
clusters~triangles!. Inset: Distribution of nearest-level spacings
50350 clusters for frequencies in the ranges 0.0–0.4~filled circles!
and 1.05–1.95~open circles!. For the sake of comparison, th
Wigner-Dyson and the Poisson distributions are also shown.
force constants at the surface were randomly chosen in the r
0.0–2.0.
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the present case. Thus it is likely that in the thermodynam
limit the Wigner-Dyson statistics should apply in the who
frequency band.

We finally note that, in the quantum limit, and due to t
actual linear relationship between energies and frequenc
quantum energy levels will also be distributed according
Wigner-Dyson statistics.

B. Dynamical behavior of the elastic medium

The correlation functionC(t) for the displacement field
obtained by launching the disordered network att50 into
two different modes of the ordered network are depicted
Fig. 3 @only positive values ofC(t) are shown#. As expected,
they show an oscillatory behavior, which, at short times
modulated by an exponential@9#. The frequency of the oscil-
lations is very similar to that of the ordered state into whi
the disordered system was launched att50 (vb

o). This is
further illustrated in Fig. 4 where the numerical results f
C(t) are plotted along with the function given in Eq.~6!. The
agreement for short times is remarkable. The frequency
the oscillation can actually be shifted in an amount wh
depends on the actual normal mode of the ordered state
which the system was launched~see Table I!. These results
are in line with those reported in Ref.@9# for correlation
functions in geometric chaotic billiards.

At longer times the numerical results forC(t) deviate
from the simple behavior of Eq.~6! as can be clearly seen i
Fig. 4 for t beyond 30. The time interval in which Eq.~6!
holds strongly depends on the frequencyvb

o . The Lyapunov

le
al-

e
ge

FIG. 3. Correlation function for the displacement field of th
disordered network launched att50 on two different normal modes
of the ordered network with frequenciesvb

o51.9346,2.5842. The
results correspond to a single realization of a 40340 cluster with
surface force constants chosen at random in the range 0.0–4.0
set: short time behavior shown to illustrate how the oscillations
the correlation function have a period which approximately cor
sponds to that of the normal mode of the ordered network. O
positive values ofC(t) are shown.
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exponent was obtained through a fitting of the numeri
results in that interval~see Table I!. The long time behavior
is in fact very complex as shown in Fig. 5.C(t) shows the
typical features of chaotic systems with regions in which i

TABLE I. Lyapunov exponent (l) and time interval (0,t0) over
which it was calculated, for a disordered network of sizeL540 and
surface force constants in the range 0.0–4.0, launched att50 into
several eigenmodes of the ordered network with frequenciesvb

o .
The variance of the distribution of disordered eigenmodes (s), the
average frequency (^v&), and the number of modesNm within that
energy~variance! is also given. The results have been grouped
cording tos.

vb
o ^v& s Nm l t0

0.3053 0.3053 0.0622 10 931028 5000
1.9467 1.9467 0.0657 250 0.0076 460
2.7733 2.7782 0.0625 80 0.0037 450

0.5820 0.6002 0.1021 30 0.0001 1200
1.9682 1.9836 0.1023 460 0.0064 250
2.5417 2.5567 0.1023 270 0.0223 100

0.6458 0.6641 0.1110 35 0.0009 1200
1.9927 2.0092 0.1109 440 0.0007 2800
2.5794 2.5970 0.1108 220 0.0308 50

0.8645 0.8966 0.1414 50 0.0041 660
1.8642 1.8942 0.1409 345 0.0087 300
2.1501 2.1839 0.1414 160 0.0053 230

FIG. 4. Short time behavior of the correlation function~filled
diamonds! for the displacement field of the disordered netwo
launched att50 on a normal mode of the ordered network wi
frequencyvb

o51.9346. The results correspond to 40340 clusters
with surface force constants chosen at random in
range 0.0–4.0. The continuous curve corresponds
C(t)5cos(1.9346t)exp(20.027t).
l

finite alternating with others where it is very small. It
interesting to note that a behavior like that of Eq.~6! should
have only been expected for allt if the distribution of
weights cab in Eq. ~3!, or, alternatively, the Fourier
transform of C(t), had a Lorentzian shape,S(v)
5l/p@l21(v2vb

o)2#.
The results discussed above allow us to enter into a q

tion of remarkable interest, namely, whether the Lyapun
exponent is or is not related to the variance of the distri
tion of the weights of the modes of the disordered netwo
Had this distribution been a Lorentzian, such as that writ
above, its variance would have completely determined
decay ofC(t). However, our results indicate that this is n
the case of the present model~see Table I!. In fact, there is
no correlation between the Lyapunov exponent and the v
ance of the distribution of weights. On the other hand, this
consistent with the long time behavior ofC(t), which is a
consequence of the non-Lorentzian character ofS(v). As the
density of states has also a significant dependence on
quency~see Fig. 1!, it is also important to check whether th
Lyapunov exponent has some correlation with the aver
number of modesNm participating in the construction of a
given ordered mode. The results forNm reported in Table I
do also indicate that there is no correlation betweenNm and
l. This conclusion is in accordance with recent results
the tight-binding Hamiltonian which indicate that th
Lyapunov exponent and the variances scale with the size of
the system in a significantly different way, namely, as 1L
and 1/L1/2, respectively@13#.

The results reported in Table I are in line with those
Fig. 2. In fact, at low frequencies the Lyapunov exponen
very small or even negligible~see the results for
vb

o50.3053), illustrating the regular behavior expected
this frequency region. The conclusion of this analysis is t

-

e
o

FIG. 5. Long time behavior of the correlation function for th
displacement field of the disordered network launched att50 on a
normal mode of the ordered network with frequencyvb

o51.9346.
The results correspond to 40340 clusters with surface force con
stants chosen at random in the range 0.0–4.0.
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the natureof the normal modes~whether chaotic or regular!
is in fact the key factor in determining the dynamics of t
system.

IV. CONCLUDING REMARKS

In this work we have investigated the properties of
elastic network with surface disorder. The model can be c
sidered a billiard in the sense that all scattering centers
located at its surface. The system has a frequency spec
characterized by nearest-mode spacings distributed acc
ing to the Wigner-Dyson distribution. It is widely accepte
that this behavior is a clear hallmark of quantum chao
behavior. The reason the present system shows this featu
the fact that it is also an eigenvalue problem.

We have also investigated its dynamical behavior
studying how the system escapes from a normal mode o
ordered network. At short times the correlation functi
shows oscillations modulated by an exponential. The
quency of these oscillations almost coincides with that of
normal mode of the ordered network into which the syst
y,

cs

it

,

n-
re
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rd-

c
is

y
he

-
e

was launched att50. On the other hand, the decaying exp
nential gives the Lyapunov exponent. At longer timesC(t)
shows a very complex behavior. The results for t
Lyapunov exponent indicate that the behavior of this syst
strongly depends on the frequency of the ordered nor
mode, and, in particular, no exponential decay of the co
lation function is observed in the lower part of the spectru
This is ascribed to the fact that in this frequency region
frequency is proportional to the wave number and thus
velocity is dispersionless. It is also shown that the dynam
behavior cannot be completely understood in terms of
variance of the distribution of the weights of the disorder
eigenstates needed to build up an ordered one.
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